fbpx

Mechanics Library

Mechanics. Simple beam. Uniformly distributed load. Static and dynamic analysis

Звезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активна
 

Routins for static and dynamic analysis of a beam on two supports. Functions determines moments, forces, deflections, slopes, frequency etc.

Linear static analysis

Support A is considered left, support B is right (see picture below).

TechEditor - Mechanics Library

Reactions

procedure BeamType1_UDL_Reactions(w, a, b, L: Double; var Ra, Rb: Double); stdcall; external [DllName];

Procedure BeamType1_UDL_Reactions calculates reactions Ra, Rb in simple beam. If errors (for example, L<0), procedure returns Ra=0 and Rb=0.

General equations for reactions:

\[R_a = w \cdot L_w \frac{2b + L_w}{2L}; R_b = w \cdot L_w \frac{2a + L_w}{2L}\]

Bending moments

procedure BeamType1_UDL_BendingMoment(w, a, b, L, x: Double; var M: Double); stdcall; external [DllName];

Procedure BeamType1_UDL_BendingMoment calculate bending moment M in simple beam. If errors (for example, L<0), procedure returns M=0.

General equations for bending moment:

\[M(x) = R_A \cdot x, x \leq a;\]

\[M(x) = R_A \cdot x - \frac{w (x - a)^2}{2}, a < x < L - b;\]

\[M(x) = R_B (L - x), x \geq L - b;\]

Shear forces

procedure BeamType1_UDL_ShearForce(w, a, b, L, x: Double; var V: Double); stdcall; external [DllName];

Procedure BeamType1_UDL_ShearForce calculate shear force V in simple beam. If errors (for example, L<0), procedure returns V=0.

General equations for shear force:

\[V(x) = R_A, x \leq a;\]

\[V(x) = R_A - w (x - a), a < x < L - b;\]

\[V(x) = -R_B, x \geq L - b;\]

Deflections

procedure BeamType1_UDL_Deflection(w, a, b, L, E, I, x: Double; var D: Double); stdcall; external [DllName];

Procedure BeamType1_UDL_Deflection calculates deflection D in simple beam. If errors (for example, L<0), procedure returns D=0.

General equations for vertical deflection:

\[d(x) = -\theta_A x - \frac{R_A x^3}{6EI}, x \leq a; \]

\[d(x) = -\theta_A x - \frac{R_A x^3}{6EI} + \frac{w(x-a)^4}{24EI}, a < x < L - b; \]

\[d(x) = \theta_B (L - x) - \frac{R_B (L - x)^3}{6EI}, x \geq L - b. \]

Slopes

procedure BeamType1_UDL_Slope(w, a, b, L, E, I, x: Double; var S: Double); stdcall; external [DllName]; 

Procedure BeamType1_UDL_Slope calculates slope S in simple beam. If errors (for example, L<0), procedure returns S=0.

General equations for slope:

\[\theta (x) = \theta_A + \frac{R_A x^2}{2EI}, x \leq a; \]

\[\theta (x) = \theta_A + \frac{R_A x^2}{2EI} - \frac{w (x - a)^3}{6EI}, a < x < L - b; \]

\[\theta (x) = \theta_B - \frac{R_B (L - x)^2}{2EI}, x \geq L - b. \]

procedure BeamType1_UDL_EndSlopes(w, a, b, L, E, I: Double; var Sa, Sb: Double); stdcall; external [DllName];

Procedure BeamType1_UDL_EndSlopes calculates slopes Sa (slope at support A) and Sb (slope at support B) in simple beam. If errors (for example, L<0), procedure returns Sa=0 and Sb=0.

General equations for end slopes:

\[S_a = -w \frac{L^4 - 4 L^2 a^2 - 2 L^2 b^2 + 4 L a^3 - a^4 + b^4}{24 E I L} \]

\[S_b = w \frac{L^4 - 2 L^2 a^2 - 4 L^2 b^2 + 4 L b^3 + a^4 - b^4}{24 E I L} \]

Dynamics analysis

Modal analysis

TechEditor - Mechanics Library

 

function BeamType1_ModalAngFrequency(L, E, I, m: Double; n: Integer): Double; stdcall; external [DllName];

Function BeamType1_ModalAngFrequency determines angular frequency of a simple beam during free vibration. You can use this routine in your applications and reports during modal analysis.

General equations for angular frequency:

\[f_i = i^2 \pi^2 \sqrt{\frac{E \cdot I}{m \cdot L^4}} \]

Common information

Arguments, variables

  • w — intensity of the unirformly distributed load;
  • a — distance between start point of the load and support A;
  • b — distance between end of the load and support B;
  • L — beam length;
  • Ra — reaction (force) at support A;
  • Rb — reaction (force) at support B;
  • x — coordinate of analyzed section (distance between support A and section with force);
  • M — bending moment;
  • V — shear force;
  • E — modulus of elasticity;
  • I — moment of inertia (cross-sectional characteristic for bending);
  • D — deflection;
  • S — slope;
  • Sa — slope at support A;
  • Sb — slope at support B;
  • m — uniformly distributed mass (mass per unit length) of the beam.

Directives

  • DllName — library name. If DLL included in installation pack, then DllName is dystlab.mechanics.dll.

Recommended units of measurement

  • a, b, L, Lw, x, d — meter [m];
  • w — newton per meter [N/m];
  • Ra, Rb — newton [N];
  • M — newton * meter [N*m];
  • E — Pascal [Pa];
  • I — meter in 4th degree [m4];
  • S — radians [rad];
  • m — kilogram per meter [kg/m];
  • i — dimensionless number (1, 2, 3, ...).

Example for TechEditor

 Пример на TechEditor Pascal Script (.PSC):

uses
Classes, Dialogs;

procedure BeamType1_UDL_Reactions(w, a, b, L: Double; var Ra, Rb: Double); stdcall; external 'dystlab.mechanics.dll';
procedure BeamType1_UDL_BendingMoment(w, a, b, L, x: Double; var M: Double); stdcall; external 'dystlab.mechanics.dll';
procedure BeamType1_UDL_ShearForce(w, a, b, L, x: Double; var V: Double); stdcall; external 'dystlab.mechanics.dll';
procedure BeamType1_UDL_Deflection(w, a, b, L, E, I, x: Double; var d: Double); stdcall; external 'dystlab.mechanics.dll';
procedure BeamType1_UDL_Slope(w, a, b, L, E, I, x: Double; var s: Double); stdcall; external 'dystlab.mechanics.dll';
procedure BeamType1_UDL_EndSlopes(w, a, b, L, E, I: Double; var Sa, Sb: Double); stdcall; external 'dystlab.mechanics.dll';

function BeamType1_ModalAngFrequency(L, E, I, m: Double; n: Integer): Double; stdcall; external 'dystlab.mechanics.dll';
var
Ra, Rb, M, V: Double;
d, s, Sa, Sb: Double;
w, f: Double;

begin
BeamType1_UDL_Reactions(1.5, 0, 0, 2.0, Ra, Rb); ShowMessage('Ra=' + FloatToStr(Ra) + '; Rb=' + FloatToStr(Rb));

BeamType1_UDL_BendingMoment(1.5, 0, 0, 2.0, 1.0, M); ShowMessage('M=' + FloatToStr(M));

BeamType1_UDL_ShearForce(1.5, 0, 0, 2.0, 1.0, V); ShowMessage('V=' + FloatToStr(V));

BeamType1_UDL_Deflection(1.5, 0, 0, 2.0, 15.0e9, 5.2e-9, 1.0, d); ShowMessage('d=' + FloatToStr(d));

BeamType1_UDL_Slope(1.5, 0, 0, 2.0, 15.0e9, 5.2e-9, 1.0, s); ShowMessage('s=' + FloatToStr(s));

BeamType1_UDL_EndSlopes(1.5, 0, 0, 2.0, 15.0e9, 5.2e-9, Sa, Sb); ShowMessage(Format('Sa=%1.5f', [Sa]) + '; ' + Format('Sb=%1.5f', [Sb]));

w := BeamType1_ModalAngFrequency(1.5, 2.0e11, 0.25, 10.0, 1); f := w / (2 * Math.Pi); ShowMessage('Linear frequency: ' + FloatToStr(f) + ' Hz'); end;

See also

Новые статьи

Dystlab™ — Project for Engineers

Dystlab™ — торговая марка, зарегистрированная в Государственном реестре свидетельств Украины на знаки для товаров и услуг 26.02.2018, свидетельство № 238304. Владелец: физическое лицо-предприниматель Артемов В. Е., ЕГРПОУ/ИНН: 3003314690.

E-mail:
technot needed texteditoranother not needed text@dystlabdummy text.store

Telegram:
https://t.me/techeditor

 

Всё самое интересное о TechEditor — в Твиттере. Присоединяйся!

TechEditor Twitter